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Nuclear-reactor slow-neutron spectra obtained by the use of a crystal monochromator contain ~ 
number of irregular fluctuations in the fomn of inverted peaks, due to fluctuations in the reflectivity 
of the crystal. I t  is shown that  these fluctuations are due to Bragg reflection of neutrons by re- 
flecting planes other than that  used to obtain the monochromatic beam. Ai)proximate formulae are 
derived for the magnitude and half-width of these inverted peaks for a mosaic crystal. Experiments 
carried out with copper and aluminium single crystals confirm that  the Bragg angles at which the 
peaks occur depend on the type of crystal structure and not on the lattice constants. The measured 
depth of the better defined peaks is in satisfactory agreement with that  calculated on the basis of 
the approximate formulae. Comparison of measurements with the crystals at room temperature 
an(t liquid-air temperatures failed to reveal the presence of inelastic scattering as a contributory 
factor to the fluctuations in refleetivity. 

In troduct ion  

The curves obtained for the thermal -neu t ron  spectrum 
()f a nuclear reactor, using a crystal monochromator ,  
~re known not to be smooth but  to contain a large 
number  of small f luctuations.  Since the reactor spec- 
t rum is known t() I)e a smooth funct ion it must  be 
concluded tha t  the variat ion of crystal  ref lect ivi ty 
with neut ron wavelength exhibits small f luctuat ions 
corresponding to those observed in the spectrum 
curves. Spencer & Smith (1959) have shown tha t  for 
beryllium and sodium chloride crystals, these fluctua- 
tions are due to Bragg reflection of neutrons by crystal  
planes other  than  the plane being used to obtain  the 
monochromat ic  beam. I)uggal (1959) has suggested 
tha t  some of the f luctuat ions in the case of a luminium 
crystals can be explained as due to inelastic scattering 
of neutrons  of other wavelengths into the mono- 
chromatic  beam. Wc give below a simple theoretical  
t r ea tmen t  of the phenomenon of parastic Bragg 
reflection in a mosaic crystal and an account  of ex- 
periments  carried out on a luminium and copper 
crystals. 

T h e o r y  

Reflection of neutrons by more than  one crystal  plane 
in a single crystal  will occur when the sphere of re- 
flection intersects more than  one lat t ice point  in recip- 
rocal space. In  the case of the use of a crystal  as a 
Inonochromator  the conditions under  which this will 
occur are i l lustrated in Fig. 1. P is the lat t ice point  
corresponding to the plane being used to give the 
monochromat ic  beam, (referred to later  as the principal 
reflecting plane). Ro ta t ion  of the crystal  in the beam 
is equivalent  in reciprocal space to the movement  of 
the centre of the reflecting sphere along the line RR 1 
which lies in the plane of incidence and bisects at  
r ight  angles the line joining P to the origin. For certain 
values of the angle 0 the sphere of reflection will pass 

through addi t ional  reciprocal I~tttice points such as p1 
in the figure. 

(ooo) 
Fig. 1. Construction in reciprocal space illustrating 

simultaneous Bragg reflection by two planes. 

Planes corresponding to such points we shall refer 
to below as 'parasit ic '  reflecting planes. Here, for 
clarity, p1 has been chosen in the plane of reflection 
which is also assumed to be a principal  symmet ry  
plane of the crystal, but  most f requent ly  the addi t ional  
points will not  be in the same plane. To find the values 
of 0 at  which multiple Bragg reflection will occur it  
is necessary to express the coordinates of the point  0 
as functions of 0 and then for a given lat t ice point  P '  
require t ha t  OP=OP'.  The carrying out  this calcula- 
t ion for a general case is of l i t t le  importance but  there 
are some points of interest  which can be deduced from 
the geometry of the problem wi thout  calculation. 
For  all crystals of cubic symmetry ,  and for the  same 
conditions of incidence of the neutron beam, it  is 
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clear tha t  mult iple  reflections will always occur at the 
same angles of incidence independent ly  of the value 
of the lattice constant. Thus in Fig. 1 the angle 0 
for which the sphere of reflection passes through both 
P and P '  is indepcndent  of the scale of the diagram. 
For other s y m m e t r y  systems mult iple  Bragg reflection 
will occur at the same angles of incidence in crystals 
which have the same ratios between lattice constants 
and the same angles t)etween crystal axes. F ina l ly  it 
should be noticed tha t  when mult iple  Bragg reflection 
occurs for a first-order reflection then it also occurs 
for higher-order reflections at the same angles of 
incidence (e.g. the th i rd  order reflection in Fig. 1 will 
1)e found by enlarging the sphere of reflection three 
fold with respect to the reciprocal lattice, 0 remaining 
unchanged).  

For an ideal crystal the range of angle of incidence 
over which mult iple  Bragg reflection can occur will 
I)e of the same ordcr as the angular  width of the 
Bragg diffraction pat tern  for an ideal crystal,  i.e. 
usually of the order of a few seconds of arc. I t  follows 
tha t  the corresponding neutron wavelength range will 
also be very small,  of the order of l() -'~ z~. In  a mosaic 
crystal  on the other hand,  mult iple  Bragg reflection 
will occur for a much larger range of angle of incidence 
and wavelength.  Thus a neutron of such wavelength 
and angle of incidende tha t  it can be Bragg reflected 
by the 'principal '  reflecting planes of onc mosaic 
})lock can also bc Bragg reflected by the 'parasit ic '  
reflecting planes of another  mosaic block if the angle 
between these bh)cks is of the appropriate  value, even 
though the neutron wavelength m a y  not exactly cor- 
respond to tha t  which gives mult iple reflection in an 
ideal crystal. 

Let  us denote by  2o a neutron wavelength for which 
mult iple  Bragg reflection can occur in an ideal crystal,  
so tha t  

;to = 2dl sin OB1 = 2d,, sin On.,_, 

where dl, de, 0m and 08~ are the reflecting plane spac- 
ings and  Bragg angles for the principal  plane and some 
parasitic reflecting plane respectively. In  the case of 
a mosaic crystal if a neutron of wavelength 2, ap- 
proximately  equal to ;to, is incident at an angle Om + cf 
then it can be reflected by the planes of a mosaic 
1)lock t i l ted at an angle fll to the mean  of the mosaic 
I)lock dis t r ibut ion where fit is given by 

fl~ = - q,'- (;to- ;t)/(2g~ c o s  OB1) • (1) 

This same neutron can also be reflected by the 'par- 
asitic '  reflecting planes of a mosaic block lying at an 
angle fie given t)y 

rio_ = - K  9 - (;t0- ;t)/(2d,z cos 0~2) , (2) 

where the constant  K depends on the relative orienta- 
tion of the principal  and parasit ic reflecting planes 
and the plane of reflection and [K[ <_ 1. From (1) and 
(2) we obtain a relation between fll and fl_~: 

f12 = K1/~l -- ( K -  K , ) ~ ,  (3) 

where 
KI = dl cos ORt/(d2 cos 0~_) . 

We shall now calculate the reflecting power of a 
mosaic crystal for the case of mult iple  Bragg reflection. 
We assume tha t  pr imary  extinction within the mosaic 
blocks and absorption of neutrons by the nuclei of 
the atoms can be neglected. The angular  distril)ution 
of mosaic blocks is assumed to be isotropic and of 
Gaussian form, so tha t  the number  of blocks lying at 
an angle fl to the mean of the distribution, is given by 

W (fl)= 1/(~(2;r)½).exp [ -  fl"/(2.rj")], 

where ~/ is the s tandard  deviat ion of the distribution. 
When  we have only one reflecting plane to consider 
Zachariasen (1945) has shown tha t  the reflectivity of 
a layer of blocks of thickness dt is equal to adt where 

~r = Q W (0 - 0,)/7 (4) 

and 0 - 0 n  is the deviat ion of the angle of incidence 
from the Bragg angle for the neutron wavelength 
eonsidered, Q is a function of wavelength and of the 
reflecting plane spacing, and y is the direetion cosine 
of the ineident beam relative to the inward normal 
to the crystal  face. Bacon & Lowde (1948) have shown 
tha t  for a non-absorbing mosaic crystal the reflectivity 
is given by (Bragg case): 

R ( O - O , )  = a(/'0/(l + aT0),  (5) 

where f/'0 is the thickness of the crystal. For mult iple 
Bragg reflections this expression must  be modified. 
We first take the case where there is only one ad- 
ditional parasit ic reflecting plane. Expressions of the 
type (4) will exist for both planes, and using the 
notation introduced earlier we have for neutrons of 
wavelength ), incident at an angle 0 m +  ~t: 

(~1 = (Q1/' y) W (ill) 
and 

~ =  (Q~/y)w(fl~), 

where fll and f12 are given by equations (l) and (3). 
If  Po(t), Pra t t )  and P1,o_(t) are the powers of the inci- 
dent  and the two reflected beams respectively at a 
depth t in the crystal then we can write for the Bragg 
case : 

dPo(t) = - (al + ~)P0(t).  dt + al PHI(t) .  dt + a'2PH2(t), dt 

d P m  (t) = - (~Po(t) .  dt + ( a~ + a ' ) P m ( t ) ,  dt 

d P  n2(t) = - a2Po(t) . dt + ( (~2 + a")PH2(t)  . dt , (6) 

where the cross sections a' and a"  represent scattering 
of the emergent  beam P m  by the 'parasit ic '  reflecting 
planes of the crystal,  and scattcring of the P m  beam 
by the principal  reflecting planes. This addit ional  
scattering of the emergent P m  beam will not in 
general be in the same direction as PH2 and vice versa. 
Fur thermore  it follows from the geometry of the 
problem tha t  both a '  and a"  will fall off more rapidly 
with increase in fll than  either al or (~2, and will there- 
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fore have much smaller average values. As a first 
approximation a' and a"  can be neglected and equa- 
tion (6) solved with the boundary conditions Pro(To) = 
PHe(To) =0.  Po, P m  and PH2 have the same form: 

P(t) = A + B exp (at) + C exp ( - at),  

where a=((rla2)½ and A, B and C are constants, dif- 
ferent for the three beams. Applying the boundary 
conditions, we obtain for the reflectivity of the crystal : 

PIt1(O) 
R (ill,  ~2) = ~)0(0i 

a (cosh a T e -  1)+ a~ sinh aTe 
a (2 cosh aTe - 1 ) + ( O"1 -~- 0"2) sinh aTe" 

When (atae)½ < To I equation (7) reduces to 

(7) 

R(fl~flz) --~ (~To/(l +((r~ + (re)To) . (8) 

On the other hand, when a t e  is large and a~ >~ a~, 
the relative error of the approximate expression (8) 
is small and approximately given by ((r2/a~)½. Com- 
parison of the expressions (8) and (5) suggests that ,  
where there is more than one interfering reflecting 
plane, the appropriate approximate expression for the 
ref]ectivity will be 

R --- o':t 7'0 / [  1 + ( a l  + ae  + aa + .  • • ) T o ]  . (9)  

To obtain an exact solution when there is more 
than one interfering plane would be possible but the 
resulting expressions would be even less tractable 
than (7). In what follows, use will be made of the 
approximate expression (9). 

R(~,) . . . .  

. . . .  , -  

-5 -4  -:3 - 2 - 1  0 1 2 3 4 5 

({) 
Fig. 2. l leflectivity of a mosaic crystal.  R( f l t ) - -normal  case, 

R (fllfl2) -- with additional 'parasitic' reflection. 

Fig. 2 illustrates the shat)e of R(fllfl2) as a function 
()f fit for the case 2=20, ~0=0, where secondary ex- 
tinction is assumed to be large (i.e. Qt ~-1), and 
Q1, Q.) have typical values. I t  is seen that  R(/~lfl2) 
coincides with R(fll) for large values of fll but pos- 

sesses a dip or ' inverted peak' around i l l=0.  The 
width of this inverted peak depends on the value of K1 
(equation (3)). If 24: 2o or q94:0 then the inverted peak 
will be shifted to one side of the curve, and if 12-201 
or [~v[ are sufficiently large then the anomaly will 
completely disappear. 

The effect of the depression in reflectivity at 2 =  ;to 
on the intensity of the reflected beam of a crystal 
monochromator will be to produce a dip in the curve 
of intensity against wavelength at 2--2o. The shape 
of this inverted peak and its magnitude will depend 
both on the crystal properties and on the angular 
resolution of the monochromator. Consider an arrange- 
ment consisting of entrance col l imator--crystal--exi t  
collimator. The intensity of the monochromatic beam 
is normally given by (Borst et al., 1953): 

N = f n(2)d2 f~,I~(~x)I2(2fll- ~)R(fl l)d~ , 

where n (2)d2 is the number of neutrons in the interval 
2--(2-F-d2), I1 (o¢) is the transmission of the first colli- 
mator for neutrons passing at an angle a (in the plane 
of the reflection) to the collimator axis and 12 a similar 
function for the exit collimator (an instrumental con- 
stant  is omitted). Assuming n(2) and R(fll) to be 
slowly varying functions of ~t in the range of interest, 
the expression for 2V can be rewritten as: 

(10) 
where 0 is the angle of reflection. 

If at the angle of reflection 00 multiple Bragg re- 
flection occurs, then the intensity of the reflected beam 
at an angle 00 + ~, where ~ is small, will be given by 

N' (y 0 = n(2) .2d cos 00 

iS x I i (~)I2(2f l l - , 'OR(f l l f l2f l3 . . . )d ,  xdfl~, ( l l )  

where R(fl l f l2fla. . . )  is given by equation (9) and 
fl2fla etc. are related t o  fll according to equation (3) 
where (F is replaced by y~-~.  Thus 

fl2= Kl f l l -  ( K -  K1) ( y)- ~) 

and f13f14 etc. are given by analogous expressions. 
Owing to the form of the expressions for the reflec- 

t ivi ty  it is not possible to obtain values for the integrals 
in (10) and (11) analytically. If certain simplifying 
assumptions are made then some useful approximate 
formulae can be obtained. :It is assumed that  the exit 
and entrance collimators are identical and that  their 
transmission function is given by 

I ( , x )=exp  l -  ~/(2~b2)] . 

Consider the simple ease of a single interfering parasitic 
reflection. If Qe/Q1 < 1 then from equations (5) and (8) 
we obtain for the depression in refleetivity 

R (fl~)- R (fl~fl.~) ~ R (fl~)Q~ W (fl~)/Q2W (fl2) . (12) 
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If Q >> 1 then R (ill) can be approximately represented 
by a step function of the form 

R = l ,  I t ' l l -<  rio; R = 0 ,  Ifll >- rio, 
where 

Q T0 = (2 In 
(2~).~y~/ " 

Then from (10), (11), and (12) we obtain 

N - N ' ( O )  = 2dl cos Oo.n(~)(Q2/Q1) 

x I~ (~)I2 (2fl, - ~)(W (fls)/lV (fl~) d~ dfl~) 
-~o -~  

and 

N = 2d~ cos 0on (;t) (~)I2 (2 f l~ -  ~) d~ dfl~. 
- - r io  ~ - -~  

Integration of these expressions yields 

(N -N ' (0 ) ) /N - - -  (Q2iQ1)(1-4-K~(/)91(2~/2)) ½. (13) 

This is the maximum fractional drop in intensity of 
the reflected beam caused by a single parasitic re- 
flection. Where there is more than one parasitic 
reflecting plane then the appropriate approximate 
expression will be given by the sum of the appropriate 
number of expressions of the type (13). 

The half width of an inverted peak can be estimated 
in the following way. When Q1 is very large (strong 
secondary extinction) it follows from equation (8) that 
the area of the dip in the reflectivity curve is relatively 
independent of the position of the dip on the curve. 
It should be further noted that  the half width of this 
dip is at least K1 times smaller than the width of the 
R(fll) curve, (this follows from equation (3)) and in 
practice K~ is found usually to be greater than 3. The 
position of the dip is found by putting fie=0 in 
equation (3) which gives 

fl/= ( ( K -  K~)IK~) (~-  :,,). 

It follows that  the contribution of this drop in 
reflectivity to the drop in reflected intensity will be 
proportional to 

N - N ' ( V ) )  ~ const. It(cx)I2(2fl~-rx)dx . 
- - 0 0  

1 ntegration gives 

2 ! -  o N - N '  (y))-~ const, exp [ -  ~ /;)fib-] . (14) 

From (13) and (14) it is seen that, when secondary 
extinction is strong, the half-width of an inverted peak 
is porportional to the half-width of the collimator 
function and that  the depth of an inverted peak is 
approximately proportional to the reciprocal of the 
collimator half-width. I t  follows that  the area of an 
inverted peak is approximately independent of the 
collimator width (assuming of course that all the 
approximations made here are justified). From (14) 
it also follows that  the depth of an inverted peak is 
proportional to the mosaic spread. This is explained 

by the fact that an increase in the mosaic spread gives 
an increase in the range of angles of incidence over 
which simultaneous reflection by several reflecting 
planes can occur. 

E x p e r i m e n t s  

Measurements were made of the variation of reflected 
neutron intensity with wavelength for copper and 
aluminium single crystals in the range of Bragg angle 
of 10 ° to 35 °. The universal double-crystal spectro- 
meter at the WWRS reactor in Warsaw was used. 
The collimators were of nominal half-angle 10 min. 
The crystals were half-cylindrical in cross-section, of 
approximate thickness 2 cm. and exposed reflecting 
surfaces of dimensions 5 x 4 cm. Both for copper and 
aluminium the (111) reflecting planes were used and 
the plane of incidence was (110). Measurements of the 
intensity were made at angular intervals of 4 rain. 
of arc. Intensity measurements were reproducible to 
better than 0.5% and the background counting rate 
was everywhere less than l(Yo of the intensity of the 
reflected beam. In order to detect the presence of 
inelastic scattering effects measurements were repeated 
on both crystals at the temperature of liquid air 
(by simply immersing the crystals in the liquid air). 
Immersion in liquid air produced no change in mosaic 
structure which could be observed in the crystal 
rocking curves. 

Resul ts  and d i scuss ion  

The curves of reflected neutron intensity versus wave- 
length obtained for the (l 1 l) planes of copper and 
aluminium crystals are given in Fig. 3. The general 
shape of the curves depends on the reactor slow- 
neutron spectrum and the variation of crystal reflec- 
tivity and neutron detector efficiency with neutron 
wavelength. The curves are seen to contain a large 
number of inverted peaks. As shown in Fig. 3 and in 
Table 1 the angular positions of the majority of peaks 
agree with those calculated on the assumption that 
the inverted peaks are caused by parasitic reflections. 
Not all of the peaks were identified, presumably 
because not all of the possible combinations of hkl 
values were utilized in the calculations. In the figure 
only one hkl value is given for each peak but in fact 
there is always more than one possible combination 
due to the symmetry of the crystal lattice. It is seen 
that while the angular positions of inverted peaks are 
the same for both aluminium and copper the relative 
depths of some of the peaks are different for the two 
crystals. 

The effect of lowering the temperature of the 
crystals is convincing evidence of thc elastic-scattering 
origin of the irregularities. For coppcr, Dcbye tem- 
perature 315 °K., at the temperature of liquid air all 
the inverted peaks are more pronounced and deeper 
(relative to the height of the curve between the peaks) 
than at room temperature, due to the operation of the 
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Fig. 3. Uneorrected reactor slow neutron spectra obtaine(1 
with a crystal mono(.hromator. 

a-Cu ( l l ] ) ,  plane of incidenoe (ll0),  300 :K. 
b-Cu (111), plane of in('idence (110), -~ ! 20 
c-A1 ( I l l ) ,  plane of incidence (110), 300 
d-Al ( I l l ) ,  plane of ineiden(.e (110), -~ 120 

D e b y e - W a l l e r  t e m p e r a t u r e  f a c t o r .  I n  a h m f i n i u m  th i s  
e f f e c t  is n o t  so m a r k e d  s ince  i ts  D e b y e  t e m p e r a t u r e  is 

h i g h e r  (398 °K.) .  N o t  one  of t h e  i n v e r t e d  p e a k s  is 
s h a l l o w e r  a t  t h e  lower  t e m p e r a t u r e .  T h e  d i f f e r e n c e  in  
ove ra l l  s h a p e  b e t w e e n  t h e  c u r v e s  a t  r o o m  a n d  l iqu id-  

a i r  t e m p e r a t u r e s  is d u e  to  t h e  v a r i a t i o n  w i t h  w a v e -  
l eng th  of t h e  a l ) so rp t i on  a n d  s c a t t e r i n g  of n e u t r o n s  in 

t h e  l i q u i d - a i r  a n d  D e w a r  vessel .  
T h e  m e a s u r e d  h a l f - w i d t h  of t h c  well  d e v e l o p e d  a n d  

s y m m c t r i c a l  i n v e r t e d  p e a k s  was  f o u n d  to  a g r e e  w i th  

t h e  v a l u e  c a l c u l a t e d  on  t h e  bas is  of  e q u a t i o n  (14) 
w i t h i n  t h e  l imi t s  of t h e  e x p e r i m e n t a l  c r ro r .  F r o m  
p r e v i o u s  m e a s u r e m e n t s  ( O ' C o n n o r  & S o s n o w s k i ,  1959), 
O = 5 . 6 + 0 . 1 5  rain. ,  w h i c h  g ives  for  t h e  h a l f - w i d t h  of  

t h e  i n v e r t e d  p e a k s  a v a l u e  of 21-0 _+ 0.6 rain.  T h e  m e a -  
s u r e d  v a l u e s  a r e  g i v e n  in T a b l e  1. I n  d e t e r m i n i n g  t h e  

h a l f - w i d t h s  t h e  d e p t h s  of p e a k s  w e r e  m e a s u r e d  r e l a t i v e  
to  t h e  a d j a c e n t  u n p e r t u r b e d  p o r t i o n s  of t h e  c u r v e .  
W h e r e  t h e  m e a s u r e d  h a l f - w i d t h  was  l a rge r ,  t h e  in- 
v e r t e d  p e a k  is less s y m m e t r i c a l  in s h a p e  p r e s u m a h l y  
b e c a u s e  of t h e  s u p c r p o s i t i o n  or  o v e r l a p p i n g  of ne igh-  
b o u r i n g  peaks .  

F o r  t h e  c o p p e r  c r y s t a l  a t  n o r m a l  t e m p e r a t u r e  t h e  

d e p t h  of s o m e  of t h e  well  d e f i n e d  p e a k s  was  c a l c u l a t e d  

u s ing  t h e  ~ p p r o x i m a t e  f o r m u l a e  g i v e n  ea r l i c r .  T h e  

m o s a i c  s p r e a d  of t h e  c o p p e r  c r y s t a l  a n d  t h e  h i g h e r -  
o r d e r  c o n t e n t  of t h e  m o n o c h r o m a t i c  b e a m  for  t h i s  

c r y s t a l  a r e  k n o w n  f r o m  p r e v i o u s  m e a s u r e m e n t s  
( O ' C o n n o r  & Sosnowsk i ,  1959). T h e  v a l u e s  c a l c u l a t c d  
u s ing  e q u a t i o n  (13) a re  g i v e n  in T a b l e  "2 t o g e t h e r  w i th  

t h e  m e a s u r e d  w~lues. T h e  a g r e e m e n t  is s a t i s f a c t o r y  
c o n s i d e r i n g  t h e  a p p r o x i m a t i o n s  m a d e  in t h e  f o r m u l a e .  
F o r  one  of t h e  peaks ,  t h a t  d u c  to  t h e  l l 3  a n d  004, 
a s e c o n d  v a l u e  was  o b t a i n e d  by  g r a p h i c a l  i n t e g r a t i o n  
of t h e  i n t e g r a l s  in e q u a t i o n s  (10) a n d  (l l ). T h e  second  
o r d e r  for  th i s  w a v e l e n g t h  was  also t a k e n  i n t o  a c c o u n t .  
A g a i n  t h e  a g r e e m e n t  wi th  t h e  m c a s u r e ( t  w d u c  is goo(l  

T a b l e  1. H a l f - w i d t h  va lues  
Typical 

interfering Copper (111) 
reflecting (~alculated - ^ 

plane Bragg Observed Half 
hkl angle angle width 

(335) 10 ° 32" 10 ° 36" --- 
(]53) i i0  7'  - -  - -  

(T33) 11 ° 25' I1 ° 26' --- 
(244) 1 l ° 45' l l ° 43' --- 
(~17) 12 ° 41" 12 ° 51" --- 
(131) 13 ° 1.6' 13 ° 14' 17' 
(117) 13 ° 49' 13 ° 57" 30" 
(353) 14 ° 36' 14 ° 42' - -  
(226) 15 ° 4' 15 ° 9' 26" 
(026) 15 ° 23" 15 ° 24' --- 
(l.l_5) 15 ° 48" 15 ° 41" 17" 
(135) 16 ° 14' 16 ° 24" 34" 
(204) 16 ° 52' 16 ° 47" - -  
(133) 17 ° 27" 17 ° 9' 22" 
(024) 17 ° 49' 17 ° 32' 19' 
(115) 19 ° 28" 19 ° 23' 15' 
(222) "22 ° O' 21 ° 54" 19" 
(I13) 25 ° 14" 25 ° 9' 19' 
(113) 29 ° 30" 29 ° 23' - -  

Half-width values are not given for very shallow inverted peaks for 
certainty.  The probable error in half width determinations is _ 2'. 

Ahmfininm (111) 

Observed H a l f  
angle width 

10 ° 27' 
l l  ° 5' 
1 i ° 2'2" 20" 

. . . .  

12" 49' ---- 
13 o 16' 25' 
13 ° 43" 
14 ° 33' 20' 
15 ° 9' --- 
15 ° 31' 
15 ° 48' - -  
16 ° 31' - -  
16 ° 53' --- 
17 ° 15" 
17 ° 37" 17" 
19 ° 23' 20' 
22 ° O" 46' 
25 ° 13" 25' 
29 ° 29" - -  

which the half width (.ould not be deternfined with any 
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(see Table 2). Calculations were not  performed for 
a /uminium since its rocking curve showed the existence 
of two peaks in the mosaic block dis t r ibut ion a few 
minutes  of arc apart .  

Tal)le 2. 

[(N--N'(O))/N] × 100 
Interfering for copper (111) 

reflecting planes Measured Calculate.d 

( I I 5) (333) (:224) (224) 14.5 17.5 
(ll3) (004) 23.5 21.5 (23.0) 
(1.33) (.313) 13.0 13.0 
(222) 9"4 11"4 

Calculated values obtained using equation (16). Values in 
brackets for (113) and (004) obtained by graphical inter- 
gration of equations (12) and (13). 

Final ly it should be pointed out  t ha t  the densi ty 
()f inverted peaks and their  magni tude effectively 

i)rohibit the use of the crystal  m<moehromator for 
precise measurements  of neut ron spectra. There would 
appear  to be no simple valid method of correcting for 
these effects. Suitable choice of reflecting plane and 
plane of reflection could result in a reduction of the 
number  of peaks observed. 
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Dif fus ion  Centra le  des  R a y o n s  X par des  P a r t i c u l e s  F i l i f o r m e s  

BY V. LUZZATI ET H. BENOIT 

('entre de Recb~rches sur les Macromole'cules, 6, rue Boussingault, Stra.~'bourg, Fra~('~. 

(Refu le 2 aw'il 1960) 

The asyml)totic form of the intensity scattered by an assembly of filiform particles is determined 
for large values of s and the geometrical parameters it (tepends on are given. 

The influence of certain types of configuration on this asymptotic behaviour is discussed. 

I n t r o d u c t i o n  

Le problbme math6mat ique  que nous t ra i tons  ici nous 
a 6t6 sugg6rd par l 'analyse de donndes expdrimentales,  
t an t  de diffusion centrale des rayons X, que de dif- 
fusion de la lumibre, obtenues avec des solutions de 
particules longues et rigides, n o t a m m e n t  d 'acide dds- 
oxyribonucldique et de certains polypeptides de syn- 
th6se. Bien souvent,  en effet, nous avons constatd 
d 'une par t  que la fonction i(s) expdrimentale a, pour 
.~' grand, la forme typique  de bgtonnets:  

i ( s )  = K s - ~  (1) 

(K est une constante,  s = 2  sin 0 . ) -1 ,  20 6tant  l 'angle 
de diffusion), mais d 'au t re  par t  que l '6cart  entre i(s) 
et sa forme asylnpto t ique  Ks -~ devient  parfois im- 
por tan t  £ mesure que i 'on se rapproche des peti tes 
valeurs de s. 

Or on salt que si un dchanti l lon est formd de b'£ton- 
nets longs eL rigides, i(s) admet  un ddveloppement  
asympto t ique  dont  le premier terme, d 'ordre s -~, ne 
d6pend que de leur masse lindaire spdcifique (Kratky,  
1956; Luzzati ,  1960). Nous nous sommes proposd 

d 'dtendre ee d6veloppement  asympto t ique  en d6ter- 
minan t  les parambtres s t rue turaux dont  ddpendent  les 
termes d 'ordre supdrieur "£ s--1. Pour eela nous avons 
ehoisi un modble plus g6ndral que eelui des b£tonnets ,  
mais dans lequel la mat.ibre est. t.oujours distribu6e 
uniformdment  le long d 'un  ill. 

Ce modble est analogue ~ la ~worm-like chain '  dont  
]?orod (1(,t49) s'est servi pour t r a i t e r  un problbme 
analogue £ eelui que nous nous proposons de rdsoudre 
iei: nous diseuterons plus loin ses rdsultats. 

Bien que le t r a i t ement  math6mat ique  soit formul6 
iei dans le cas de la diffusion des rayons X, il s'ap- 
plique 6galement '~ la diffusion de la lumi6re. 

T r a i t e m e n t  m a t h 6 m a t i q u e  

Nous admet tons  dans la suite que toute  la matibre 
de l 'dchanti l lon est localisde dana un ou plusieurs 
f i laments  de dimensions transversales ndgligeables, 
dont  la masse spdcifique lindaire est pa r tou t  la m6me. 
L est la longueur tota le  des f i laments  de l '6chantil lon,  
M leur masse ( t t = M / L ) .  Nous supposons en outre 
que l 'dehanti l lon est isotrope. 


