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Parasitic Multiple Bragg Scattering in the Neutron Crystal Spectrometer
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(Recerved 18 February 1960)

Nuclear-reactor slow-ncutron spectra obtained by the use of a crystal monochromator contain a
uumnber of irregular fluctuations in the form of inverted peaks, due to fluctuations in the reflectivity
of the crystal. It is shown that these fluctuations are due to Bragg reflection of ncutrons by re-
flecting plancs other than that used to obtain the monochromatic beam. Approximate formulae are
derived for the magnitude and half-width of these inverted peaks for a mosaic crystal. Experiments
carried out with copper and aluminium single crystals confirm that the Bragg angles at which the
peaks oceur depend on the type of crystal structure and not on the lattice constants. The measured
depth of the better defined peaks is in satisfactory agrecement with that calculated on the basis of
the approximate formulac. Comparison of measurements with the crystals at room temperature
and liquid-air temperatures failed to reveal the presence of inelastic scattering as a contributory

factor to the fluctuations in reflectivity.

Introduction

The curves obtained for the thermal-neutron spectrum
of a nuclear reactor, using a crystal monochromator,
are known not to be smooth but to contain a large
number of small fluctuations. Since the reactor spec-
trum is known to be a smooth function it must be
concluded that the variation of erystal reflectivity
with neutron wavelength exhibits small fluctuations
corresponding to those observed in the spectrumn
curves. Spencer & Smith (1959) have shown that for
beryllium and sodium chloride crystals, these fluctua-
tions are due to Bragg reflection of neutrons by crystal
planes other than the plane being used to obtain the
monochromatic beam. Duggal (1959) bas suggested
that some of the fluctuations in the case of aluminium
crystals can be explained as due to inelastic scattering
of neutrons of other wavelengths into the mono-
chromatic beam. We give below a simple theoretical
treatment of the phenomenon of parastic Bragg
reflection in a mosaic crystal and an account of ex-
periments carried out on aluminium and copper
crystals.

Theory

Reflection of neutrons by more than one crystal plane
in a single crystal will occur when the sphere of re-
flection intersects more than one lattice point in recip-
rocal space. In the case of the use of a crystal as a
monochromator the conditions under which this will
occur are illustrated in Fig. 1. P is the lattice point
corresponding to the plane being used to give the
monochromatic beam, (referred to later as the principal
reflecting plane). Rotation of the crystal in the beam
is equivalent in reciprocal space to the movement of
the centre of the reflecting sphere along the line RR!
which lies in the plane of incidence and bisects at
right angles the line joining P to the origin. For certain
values of the angle § the sphere of reflection will pass

through additional reciprocal lattice points such as P?
in the figure.
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Fig. 1. Construction in reciprocal space illustrating
simultaneous Bragg reflection by two planes.

Planes corresponding to such points we shall refer
to below as ‘parasitic’ reflecting planes. Here, for
clarity, It has been chosen in the plane of reflection
which is also assumed to be a principal symmetry
plane of the crystal, but most frequently the additional
points will not be in the same plane. To find the values
of 0 at which multiple Bragg reflection will occur it
is necessary to express the coordinates of the point O
as functions of 6 and then for a given lattice point P’
require that OP=0OP’. The carrying out this calcula-
tion for a general case is of little importance but there
are some points of interest which can be deduced from
the geometry of the problem without calculation.
For all crystals of cubic symmetry, and for the same
conditions of incidence of the neutron beam, it is
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clear that multiple reflections will always occur at the
same angles of incidence independently of the value
of the lattice constant. Thus in Fig. 1 the angle 0
for which the sphere of reflection passes through both
P and P’ is independent of the scale of the diagram.
For other symmetry systems multiple Bragg reflection
will occur at the same angles of incidence in crystals
which have the same ratios between lattice constants
and the same angles between crystal axes. Finally it
should be noticed that when multiple Bragg reflection
oceurs for a first-order reflection then it also occurs
for higher-order reflections at the same angles of
incidence (e.g. the third order reflection in Fig. 1 will
be found by enlarging the sphere of reflection three
fold with respect to the reciprocal lattice, 6 remaining
unchanged).

For an ideal crystal the range of angle of incidence
over which multiple Bragg reflection can occur will
be of the same order as the angular width of the
Bragg diffraction pattern for an ideal crystal, i.e.
usually of the order of a few seconds of arc. It follows
that the corresponding neutron wavelength range will
also be very small, of the order of 10-3 A. In a mosaic
crystal on the other hand, multiple Bragg reflection
will occur for a much larger range of angle of incidence
and wavelength. Thus a neutron of such wavelength
and angle of incidende that it can be Bragg reflected
by the ‘principal’ reflecting planes of one mosaic
block can also be Bragg reflected by the ‘parasitic’
reflecting planes of another mosaic block if the angle
between these blocks is of the appropriate value, even
though the neutron wavelength may not exactly cor-
respond to that which gives multiple reflection in an
ideal crystal.

Let us denote by Ao a neutron wavelength for which
multiple Bragg reflection can occur in an ideal crystal,
SO thAl 24y sin O =2 sin B
where di, da, 051 and Op: are the reflecting plane spac-
ings and Bragg angles for the principal plane and some
parasitic reflecting plane respectively. In the case of
a mosaic crystal if a neutron of wavelength A, ap-
proximately equal to Ao, is incident at an angle Op1+ ¢
then it can be reflected by the planes of a mosaic
block tilted at an angle 8, to the mean of the mosaic
block distribution where §; is given by

ﬁlz —(])—(ﬂ,()— }.)/(Z(h Ccos 01}1) - (1)

This same neutron can also be reflected by the ‘par-
asitic’ reflecting planes of a mosaic block lying at an
angle 82 given by

ﬂ:_,_: — K(p-— (2,0—),)/(2d2 CcOos 032) ] (2)

where the constant K depends on the relative orienta-
tion of the principal and parasitic reflecting planes
and the plane of reflection and |K| < 1. From (1) and
(2) we obtain a relation between §; and B.:

ﬂ2=K1,31—(K*K1)(P‘, 3)
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where
]{1:(11 cos 031:(d2 CcOS 01;2) .

We shall now calculate the reflecting power of a
mosaic crystal for the case of multiple Bragg reflection.
We assume that primary extinction within the mosaic
blocks and absorption of neutrons by the nuclei of
the atoms can be neglected. The angular distribution
of mosaic blocks is assumed to be isotropic and of
Gaussian form, so that the number of blocks lying at
an angle 8 to the mean of the distribution, is given by

W (B)=1/(n2n)}).exp [~ (2],

where 7 is the standard deviation of the distribution.
When we have only one reflecting plane to consider
Zachariasen (1945) has shown that the reflectivity of
a layer of blocks of thickness dt is equal to odt where

o=QW (0 —0r)/y (4)

and 6—0p is the deviation of the angle of incidence
fromm the Bragg angle for the neutron wavelength
considered, @ is a function of wavelength and of the
reflecting plane spacing, and v is the direction cosine
of the incident beam relative to the inward normal
to the crystal face. Bacon & Lowde (1948) have shown
that for a non-absorbing mosaic crystal the reflectivity
is given hy (Bragg case):

R(6—03)=0J1'()/!(1+ O’T()) s (5)

where 7'y is the thickness of the erystal. For multiple
Bragg reflections this expression must be modified.
We first take the case where there is only one ad-
ditional parasitic reflecting plane. Expressions of the
type (4) will exist for both planes, and using the
notation introduced earlier we have for neutrons of
wavelength 4 incident at an angle Opi+ ¢

o1=(Q1/y)W (1)
aa=(Q/ Y)W (B2) ,

where i1 and f. are given by equations (1) and (3).
If Po(t), Pni(t) and Ppe(t) are the powers of the inci-
dent and the two reflected beams respectively at a
depth ¢ in the crystal then we can write for the Bragg
case:

and

dPo(t) = — (014 02)Po(t).dt+ 61 Pui(t) . dt + 2P ua(t) . di
APm(t)= — o1Po(t).dt+ (o1 + o")Pri(t) .dt
APpo(t)= — 0'2P()(l) Jdt+ (o2+ O‘”)Pnz(t) .dt, (6)

where the cross sections ¢’ and ¢’’ represent scattering
of the emergent beam P by the ‘parasitic’ reflecting
planes of the crystal, and scattering of the Py beam
by the principal reflecting planes. This additional
scattering of the emergent Py; beam will not in
general be in the same direction as Py2 and vice versa.
Furthermore it follows from the geometry of the
problem that both ¢’ and ¢” will fall off more rapidly
with increase in 8, than either 61 or g2, and will there-
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fore have much smaller average values. As a first
approximation ¢’ and ¢’’ can be neglected and equa-
tion (6) solved with the boundary conditions Py (7o) =
Pra(To)=0. Py, Pr1 and Pp2 have the same form:

P(t)=A+ Bexp (at)+C exp (—at) ,

where a=(0102)! and 4, B and C are constants, dif-
ferent for the three beams. Applying the boundary
conditions, we obtain for the reflectivity of the crystal:

_ Py1(0)

R(ﬁl’ ﬁ‘l) - 1)0(05

a (cosh aTo—1)+ o1 sinh a7 )

~ /(2 cosh aTo—1)+ (01+ o2) sinh aTo”
When (0102)% < T5! equation (7) reduces to
R (p1f2) ~ 01To/(1+(01+ 02)T0) . (8)

On the other hand, when a7 is large and o1 > o2,
the relative crror of the approximate expression (8)
is small and approximately given by (o2/01)%. Com-
parison of the expressions (8) and (5) suggests that,
where there is more than one interfering reflecting
plane, the appropriate approximate expression for the
reflectivity will be

R~ 01To/{1+(01+ 024+ 03+ ...)T0] . (9)

To obtain an exact solution when there is more
than one interfering plane would be possible but the
resulting expressions would be even less tractable
than (7). In what follows, use will be made of the
approximate expression (9).

-5 ~4 <3 -2 -1 0o 1 2 3 4 5
4

Fig. 2. Reflectivity of a mosaic crystal. R(f;)—normal case,
R ($,f,) — with additional ‘parasitic’ reflection.

Fig. 2 illustrates the shape of R(f182) as a function
of f1 for the case A= 4o, ¢ =0, where secondary ex-
tinction is assumed to be large (i.e. @i > 1), and
(1, Q2 have typical values. It is seen that R(f:1f2)
coincides with R(f:) for large values of f§, but pos-

sesses a dip or ‘inverted peak’ around f;=0. The
width of this inverted peak depends on the value of K,
(equation (3)). If A= 2o or ¢ =0 then the inverted peak
will be shifted to one side of the curve, and if |4 — Ao
or |@| are sufficiently large then the anomaly will
completely disappear.

The effect of the depression in reflectivity at A= 4y
on the intensity of the reflected beam of a crystal
monochromator will be to produce a dip in the curve
of intensity against wavelength at A= 4. The shape
of this inverted peak and its magnitude will depend
both on the crystal properties and on the angular
resolution of the monochromator. Consider an arrange-
ment consisting of entrance collimator—crystal—exit
collimator. The intensity of the monochromatic beam
Is normally given by (Borst et al., 1953):

N =\ wnar\ Lo Les- R,
(13 o

where n(1)d A is the number of neutrons in the interval
A—(A+dA), I («) is the transmission of the first colli-
mator for neutrons passing at an angle « (in the plane
of the reflection) to the collimator axis and I a similar
function for the exit collimator (an instrumental con-
stant is omitted). Assuming n(A) and R(S1) to be
slowly varying functions of 4 in the range of interest,
the expression for N can be rewritten as:

N =n(}).2d cos 0\ S L1(8) (21— )R (1) ddBy

B« (10)

-

where 0 is the angle of reflection.

If at the angle of reflection 0y multiple Bragg re-
flection occurs, then the intensity of the reflected beam
at an angle 0o+ v, where y is small, will be given by

N'(p) =n(2).2d cos 0o
XS \ I (3) o2y — )R (Bufofa. . )dxdpr, (11)
£ e

where R(f1f2fs...) is given by equation (9) and
B2z ete. are related to f; according to equation (3)
where ¢ is replaced by ¢ — «. Thus

Pe= K11~ (K~ K1) (p— o)

and f3f, etc. are given by analogous expressions.

Owing to the form of the expressions for the reflec-
tivity it is not possible to obtain values for the integrals
in (10) and (11) analytically. If certain simplifying
assumptions are made then some useful approximate
formulae can be obtained. It is assumed that the exit
and entrance collimators are identical and that their
transmission function is given by

I(s)=cxp [ = ~%/(20?)] .

Consider the simple case of a single interfering parasitic
reflection. If Q2/¢: <1 then from equations (5) and (8)
we obtain for the depression in reflectivity

R(f1)— B (B1f2) ~ R(B1)Q W (B1)/ QW (B2) . (12)
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If @ > 1 then R(B1) can be approximately represented
by a step function of the form

R=1, || < Bo; R=0, |8 = fo,

Ql@;)*
2m)tyy)

where
ﬂo = ’)’] <2 lni

Then from (10), (11), and (12) we obtain
N —N'(0) = 2d, cos Oo.n(A)(Q2/Q1)

Bo poo
x S ,3 S 1 () 1221 — &) (W (Be)| W () docd )
and T

N = 2d, cos (on(4) \.ﬁo Soo () 2(2p1— x)dadBy .

¢—fo
Integration of these expressions yields
(N =N'(0)/N ~ (Q=/Qn) (1 + K19%/(272)) .

This is the maximum fractional drop in intensity of
the reflected beam caused by a single parasitic re-
flection. Where there is more than one parasitic
reflecting plane then the appropriate approximate
expression will be given by the sum of the appropriate
number of expressions of the type (13).

The half width of an inverted peak can be estimated
in the following way. When ¢ is very large (strong
secondary extinction) it follows from equation (8) that
the area of the dip in the reflectivity curve is relatively
independent of the position of the dip on the curve.
It should be further noted that the half width of this
dip is at least K; times smaller than the width of the
R(f1) curve, (this follows from equation (3)) and in
practice K, is found usually to be greater than 3. The
position of the dip is found by putting f2=0 in
equation (3) which gives

Bi=((K —K1)/K1)(p— &) .

It follows that the contribution of this drop in
reflectivity to the drop in reflected intensity will be
proportional to

(13)

o0
N —N'(y) ~ const. g Ii(x) 12281 — x)d o .
v —=00
Integration gives

N —N'(p) ~ const. exp [— p2/5D?] . (14)

From (13) and (14) it is seen that, when secondary
extinetion is strong, the half-width of an inverted peak
is porportional to the half-width of the collimator
function and that the depth of an inverted peak is
approximately proportional to the reciprocal of the
collimator half-width. It follows that the area of an
inverted peak is approximately independent of the
collimator width (assuming of course that all the
approximations made here are justified). From (14)
it also follows that the depth of an inverted peak is
proportional to the mosaic spread. This is explained
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by the fact that an increase in the mosaic spread gives
an increase in the range of angles of incidence over
which simultaneous reflection by several reflecting
planes can occur.

Experiments

Measurements were made of the variation of reflected
neutron intensity with wavelength for copper and
aluminium single crystals in the range of Bragg angle
of 10° to 35°. The universal double-crystal spectro-
meter at the WWRS reactor in Warsaw was used.
The collimators were of nominal half-angle 10 min.
The crystals were half-cylindrical in cross-section, of
approximate thickness 2 cm. and exposed reflecting
surfaces of dimensions 5x4 cm. Both for copper and
aluminium the (111) reflecting planes were used and
the plane of incidence was (110). Measurements of the
intensity were made at angular intervals of 4 min.
of arc. Intensity measurements were reproducible to
better than 0-59, and the background counting rate
was everywhere less than 19 of the intensity of the
reflected beam. In order to detect the presence of
inelastic scattering effects measurements were repeated
on both crystals at the temperature of liquid air
(by simply immersing the crystals in the liquid air).
Immersion in liquid air produced no change in mosaic
structure which could be observed in the crystal
rocking curves.

Results and discussion

The curves of reflected neutron intensity versus wave-
length obtained for the (111) planes of copper and
aluminium crystals are given in Fig. 3. The general
shape of the curves depends on the reactor slow-
neutron spectrum and the variation of crystal reflec-
tivity and neutron detector efficiency with neutron
wavelength. The curves are seen to contain a large
number of inverted peaks. As shown in Fig. 3 and in
Table 1 the angular positions of the majority of peaks
agree with those calculated on the assumption that
the inverted peaks are caused by parasitic reflections.
Not all of the peaks were identified, presumably
because not all of the possible combinations of hkl
values were utilized in the calculations. In the figure
only one Akl value is given for each peak but in fact
there is always more than one possible combination
due to the symmetry of the crystal lattice. It is seen
that while the angular positions of inverted peaks are
the same for both aluminium and copper the relative
depths of some of the peaks are different for the two
crystals.

The effect of lowering the temperature of the
crystals is convineing evidence of the elastic-scattering
origin of the irregularities. For copper, Debye tem-
perature 315 °K., at the temperature of liquid air all
the inverted peaks are more pronounced and deeper
(relative to the height of the curve between the peaks)
than at room temperature, due to the operation of the
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Neutron counting rate (arbitrary units)
o

20° 25° 30°

Bragg scattering angle
Fig. 3. Uncorrected reactor slow neutron spectra obtained
with a crystal monochromator.
a-Cu (111), plane of incidence (110
b—Cu (111), plane of incidence (110
c-Al (111), plane of incidence (110
d-Al (111), plane of incidence (110

, 300 °K.
,~ 120
, 300
, ~ 120

Debye-Waller temperature factor. In aluminium this
effect is not so marked since its Debye temperature is

IN THE

NEUTRON CRYSTAL SPECTROMETER
higher (398 °K.). Not one of the inverted peaks is
shallower at the lower temperature. The difference in
overall shape between the curves at room and liquid-
air temperatures is due to the variation with wave-
length of the absorption and scattering of neutrons in
the liquid-air and Dewar vessel.

The measured half-width of the well developed and
symmetrical inverted peaks was found to agree with
the value calculated on the basis of equation (14)
within the limits of the experimental error. From
previous measurements (O’Connor & Sosnowski, 1959),
@ =5-6+0-15 min., which gives for the half-width of
the inverted peaks a value of 21-0 + 0-6 min, The mea-
sured values are given in Table 1. In determining the
half-widths the depths of peaks were measured relative
to the adjacent unperturbed portions of the curve.
Where the measured half-width was larger, the in-
verted peak is less symmetrical in shape presumably
because of the superposition or overlapping of neigh-
bouring peaks.

For the copper crystal at normal temperature the
depth of some of the well defined peaks was calculated
using the approximate formulae given earlicr. The
mosaic spread of the copper crystal and the higher-
order content of the monochromatic beam for this
crystal are known from previous measurements
(O’Connor & Sosnowski, 1959). The values calculated
using equation (L3) are given in Table 2 together with
the measured values. The agreement is satisfactory
considering the approximations made in the formulae.
For one of the peaks, that duc to the 113 and 004,
a second value was obtained by graphical integration
of the integrals in equations (10) and (11). The second
order for this wavelength was also taken into account.
Again the agreement with the mecasured value is good

Table 1. Half-width values

Copper (111)

Aluminium (111)

Typical
interfering
reflecting Caleulated
plane Bragg Observed
hikl angle angle
(335) 10° 327 10° 367
(133) 11° 7/ —
(133) 11° 25 11° 267
(244) 11° 45 11° 43’
(117) 12° 417 12° 517
(131) 13° 16 13° 147
(117) 13° 49° 13° 577
(353) 14° 36’ 14° 42’
(226) 15° 4 15° o
(026) 15° 23° 13° 247
(115) 15° 48’ 15° 41’
(135) 16° 147 16° 24
(204) 16° 527 16° 47
(133) 17° 27/ 17° 9’
(024) 17° 49’ 17° 32’
(115) 19° 28’ 19° 23’
(222) 22° ¢ 21° 54’
(113) 25° 14 25° 9
(113) 29° 30 29° 23’

Half Observed Half
width angle width
— 10° 27 —
— e 5 —
- 11e 227 20/
— 12° 49/ —
17/ 13° 16° 257
307 13° 437 —
— 14° 337 20
26’ 15° 9’ —_
— 15° 317 —
177 15° 487 —
347 16° 317 —
— 16° 537 S—
227 17° 157 —
19/ 17° 377 177
157 19° 237 207
197 22° 0 46"
19/ 25° 13’ 257
— 29° 297 -

Half-width values are not given for very shallow inverted peaks for which the half width could not be determined with any
certainty. The probable error in half width determinations is + 2.
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(see Table 2). Calculations were not performed for
aluminium since its rocking curve showed the existence
of two peaks in the mosaic block distribution a few
minutes of arc apart.

Table 2.
(N — N’(0))/N] x 100

Interfering for copper (111)
reflecting planes Measured Calculated
(115) (333) (224) (224) 14:5 17-5
(113) (004) 235 21-5  (23-0)
(133) (313) 13-0 13-0
(222) 9-4 11-4

Calculated values obtained using equation (16). Values in
brackets for (113) and (004) obtained by graphical inter-
gration of equations (12) and (13).

Finally it should be pointed out that the density
of inverted peaks and their magnitude effectively
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prohibit the use of the crystal monochromator for
precise measurements of neutron spectra. There would
appear to be no simple valid method of correcting for
these effects. Suitable choice of reflecting plane and
plane of reflection could result in a reduction of the
number of peaks observed.
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Diffusion Centrale des Rayons X par des Particules Filiformes

By V. Luvzzari T H. Benoir

(entre de Recherches sur les Macromolécules, 6, rue Boussingaull, Strasbourg, France

(Regu le 2 avril 1960)

The asymptotic form of the intensity scattered by an assembly of filiform particles is determined
for large values of s and the geometrical parameters it depends on are given.
The influence of certain types of configuration on this asymptotic behaviour is discussed.

Introduction

Le probléeme mathématique que nous traitons ici nous
a été suggéré par 'analyse de données expérimentales,
tant de diffusion centrale des rayons X, que de dif-
fusion de la lumiére, obtenues avec des solutions de
particules longues et rigides, notamment d’acide dés-
oxyribonucléique et de certains polypeptides de syn-
thése. Bien souvent, en effet, nous avons constaté
d’une part que la fonction i(s) expérimentale a, pour
s grand, la forme typique de batonnets:

i(s) = Ks™1 (1)
§—>00
(K est une constante, s=2sin .41, 20 étant I’angle
de diffusion), mais d’autre part que I’écart entre i(s)
et sa forme asymptotique Ks-1 devient parfois im-
portant & mesure que I'on se rapproche des petites
valeurs de s.

Or on sait que si un échantillon est formé de baton-
nets longs ct rigides, i(s) admet un développement
asymptotique dont le premier terme, d’ordre s1, ne
dépend que de leur masse linéaire spécifique (Kratky,
1956 Iuzzati, 1960). Nous nous sommes proposé

d’étendre ce développement asymptotique en déter-
minant les parameétres structuraux dont dépendent les
termes d’ordre supérieur a s-1. Pour cela nous avons
choisi un modeéle plus général que celui des batonnets,
mais dans lequel la matiére est toujours distribuée
uniformément le long d'un fil.

Ce modele est analogue a la “worm-like chain’ dont
Porod (1949) s’est servi pour traiter un probléme
analogue a celui que nous nous proposons de résoudre
ici: nous discuterons plus loin ses résultats.

Bien que le traitement mathématique soit formulé
ici dans le cas de la diffusion des rayons X, il s’ap-
plique également a la diffusion de la lumiére.

Traitement mathématique

Nous admettons dans la suite que toute la matiére
de l’échantillon est localisée dans un ou plusieurs
filaments de dimensions transversales négligeables,
dont la masse spécifique linéaire est partout la méme.
L est la longueur totale des filaments de 1’échantillon,
M leur masse (u=M/L). Nous supposons en outre
que I’échantillon est isotrope.



